skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schoeneman, Frank"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Scientific data, generated by computational models or from experiments, are typically results of nonlinear interactions among several latent processes. Such datasets are typically high-dimensional and exhibit strong temporal correlations. Better understanding of the underlying processes requires mapping such data to a low-dimensional manifold where the dynamics of the latent processes are evident. While nonlinear spectral dimensionality reduction methods, e.g., Isomap, and their scalable variants, are conceptually fit candidates for obtaining such a mapping, the presence of the strong temporal correlation in the data can significantly impact these methods. In this paper, we first show why such methods fail when dealing with dynamic process data. A novel method, Entropy-Isomap, is proposed to handle this shortcoming. We demonstrate the effectiveness of the proposed method in the context of understanding the fabrication process of organic materials. The resulting low-dimensional representation correctly characterizes the process control variables and allows for informative visualization of the material morphology evolution. 
    more » « less
  2. Algorithms for computing All-Pairs Shortest-Paths (APSP) are critical building blocks underlying many practical applications. The standard sequential algorithms, such as Floyd-Warshall and Johnson, quickly become infeasible for large input graphs, necessitating parallel approaches. In this work, we propose, implement and thoroughly analyse different strategies for APSP on distributed memory clusters with Apache Spark. Our solvers are designed for large undirected weighted graphs, and differ in complexity and degree of reliance on techniques outside of pure Spark API. We demonstrate that the best performing solver is able to handle APSP problems with over 200,000 vertices on a 1024-core cluster. However, it requires auxiliary shared persistent storage to compensate for missing Spark functionality. 
    more » « less